Ever unreeling

spider

Few creatures inspire so much instinctive fear as the spider.  Perhaps it is the number of legs.  Or the rotund, hairy bodies.  Or the knowledge that some are poisonous to us, without the understanding of which species pose a threat.  Perhaps it is simply the alien nature of their existence: how they can be unseen and everywhere, so different from us, so impossible.

In the first stanza of Walt Whitman’s poem, “A noiseless patient spider,” the author observes the behavior of a spider as it throws out one silken thread after another:

“A noiseless patient spider,
I mark’d where on a little promontory it stood isolated,
Mark’d how to explore the vacant vast surrounding,
It launch’d forth filament, filament, filament out of itself,
Ever unreeling them, ever tirelessly speeding them.”
 

We’ve all seen a spider dangling inexplicably from the ceiling, or watched it escape on its line of filament.  But how does a spider create silk?  Where does this material come from, and why is it so strong?

As it turns out, spiders have seven different kinds of silk, produced by seven silk glands.  One spider cannot make all seven types of silk; instead, males have at least three different types, and females have at least four.  These glands secrete silk proteins (made of strings of amino acids) dissolved in solution.  Liquid silk is pushed through internal ducts and emerges from microscopic spigots on the spider’s spinnerets (organs at the rear of the spider’s abdomen, designed for just this purpose).  This electron micrograph shows the silk spigots in operation:

Image by MicroAngela

Image by MicroAngela

There is a valve on every spigot that controls the speed and thickness of the silk.  As the spigots exude silk, they pull fibroin protein molecules from the ducts.  With the addition of these protein molecules, the silk becomes stretched out and the molecules link in the air.  The spinnerets wind the strands together to become a silk fiber.  Spider silk is incredibly tough and is stronger by weight than steel.  Some varieties are twice as strong by weight than Kevlar, the toughest man-made polymer.

So what have we done to harness this natural resource?  As early as 1710, a Frenchman, François Xavier Bon de Saint Hilaire, showed Europeans how garments could be made from spider silk.  Recently, an entire golden cape (the natural color of the silk) has been created…with the help of 1.2 million spiders.  Companies have also tried to harness the almost supernatural strength of spider silk, though the problem has always been producing enough in quantity.  A company called Nexia successfully created transgenic goats that could produce spider silk proteins in their milk.  Even that wasn’t enough for mass production, and the company went bankrupt in 2009.  Most recently, in 2012, Dr. Craig Vierra demonstrated techniques to develop and process synthetic spider silk from bacteria.  So the search goes on.

Was Whitman thinking about any of this when he wrote “A noiseless patient spider”?  I doubt it.  But he was, apparently, thinking of how humans are not so different from spiders after all.  Spiders spin their tenuous thread to find their way in “the vacant vast surrounding.”  Whitman recognizes this behavior in his second stanza:

“And you O my soul where you stand,
Surrounded, detached, in measureless oceans of space,
Ceaselessly musing, venturing, throwing, seeking the spheres to connect them,
Till the bridge you will need be form’d, till the ductile anchor hold,
Till the gossamer thread you fling catch somewhere, O my soul.”
 

In a literal sense, humans build bridges to get from one place to another, planes and cars and buses to carry us there.  But do we not all seek a place?  Do we not seek knowledge and experience and try to understand our surroundings?  Whitman’s soul is doing its best to find a place where he can anchor.  He is casting out his “gossamer thread” and praying it will catch, hoping to be no longer lost in “measureless oceans of space.”  It seems we have much to learn from spiders, perhaps more than we knew.

REFERENCES:

Harris, Tom. 2002. “How Spiders Work”  HowStuffWorks.com. Link.

Jones, Denna.  2012.  “The gossamer cape: spun by a million spiders.” The Guardian.  Link.

The Journal of Visualized Experiments. “The future of biomaterial manufacturing: Spider silk production from bacteria.” ScienceDaily, 18 Jul. 2012. Link.

“A noiseless patient spider,” by Walt Whitman.  Read it here.

O’Brien, Miles and Marsha Walton.  2010. “Got Silk?”  NSF Science Nation.  Link.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s